Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteome Res ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38663020

ABSTRACT

Physiological processes, such as the epithelial-mesenchymal transition (EMT), are mediated by changes in protein interactions. These changes may be better reflected in protein covariation within a cellular cluster than in the temporal dynamics of cluster-average protein abundance. To explore this possibility, we quantified proteins in single human cells undergoing EMT. Covariation analysis of the data revealed that functionally coherent protein clusters dynamically changed their protein-protein correlations without concomitant changes in the cluster-average protein abundance. These dynamics of protein-protein correlations were monotonic in time and delineated protein modules functioning in actin cytoskeleton organization, energy metabolism, and protein transport. These protein modules are defined by protein covariation within the same time point and cluster and, thus, reflect biological regulation masked by the cluster-average protein dynamics. Thus, protein correlation dynamics across single cells offers a window into protein regulation during physiological transitions.

2.
bioRxiv ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38187715

ABSTRACT

Physiological processes, such as epithelial-mesenchymal transition (EMT), are mediated by changes in protein interactions. These changes may be better reflected in protein covariation within cellular cluster than in the temporal dynamics of cluster-average protein abundance. To explore this possibility, we quantified proteins in single human cells undergoing EMT. Covariation analysis of the data revealed that functionally coherent protein clusters dynamically changed their protein-protein correlations without concomitant changes in cluster-average protein abundance. These dynamics of protein-protein correlations were monotonic in time and delineated protein modules functioning in actin cytoskeleton organization, energy metabolism and protein transport. These protein modules are defined by protein covariation within the same time point and cluster and thus reflect biological regulation masked by the cluster-average protein dynamics. Thus, protein correlation dynamics across single cells offer a window into protein regulation during physiological transitions.

SELECTION OF CITATIONS
SEARCH DETAIL
...